Ecuación de Clausius-Clapeyron

Ecuación de Clausius-Clapeyron
Información sobre la plantilla
Concepto:Se emplea para determinar la variación de la presión de saturación con la temperatura. También se utiliza en la regiónsólido-vapor si se sustituye la la entalpía de vaporización por la entalpía de sublimación de la sustancia.


La ecuación Clausius-Clapeyron es una forma de caracterizar el cambio de fases entre un líquido y el sólido. En un diagrama P-T (presión-temperatura), la línea que separa ambos estados se conoce como curva de coexistencia. La relación de Clausius Clapeyron da la pendiente de dicha curva. Matemáticamente se puede expresar como:

CC1.png


donde CC2.png es la pendiente de dicha curva, ΔH es el calor latente o entalpía del cambio de fase y ΔV es el volumen.


Deducción

Consideremos un punto cualquiera sobre una línea de equilibrio entre dos las fases, que llamaremos α y β. La condición para que exista equilibrio de fases es que:Eqn5-5.gif , pero para una sustancia pura Eqn5-10.gif , por tanto en un punto sobre la curva de equilibrio de dos fases Eqn5-11.gif , y cualquier variación infinitesimal que suponga un desplazamiento sobre la curva de equilibrio implica queEqn5-12.gif . O lo que es lo mismo,Eqn5-13.gif , y reagrupando términos Eqn5-14.gif .

Por otra parte si se considera que en un cambio de fase reversible a T y P constantes Eqn5-15.gif , se tiene que Eqn5-16.gif

Ecuación de Clapeyron

El nombre de ecuación de Clapeyron esen honor al ingeniero y físico francés E. Clapeyron (1799-1864). Ésta es una importante relación termodinámica pues permite determinar la entalpía de vaporización a una temperatura determinada midiendo simplemente la pendiente de la curva de saturación en un diagrama P-T y el volumen específico del líquido saturado y el vapor saturado a la temperatura dada.

La ecuación de Clapeyron permite calcular la pendiente de una línea de equilibrio entre dos fases en el diagrama de fases P-T de un sistema de un componente.

Consideraciones sobre la ecuación de Clapeyron

  • En un cambio de fase líquido-vapor, tanto ΔH como ΔV son positivos, por tanto la pendiente de la línea de equilibrio líquido-vapor es positiva. Lo mismo sucede con la línea sólido-vapor.
  • En un cambio de fase sólido-líquido, ΔH es positivo y en general ΔV también, por lo tanto la pendiente de esta línea también será positiva. Existen sin embargo algunas excepciones como el H2O, Ga o Bi debido a una disminución de volumen que sufren estos componentes al fundirse, en estos casos la pendiente de la línea de equilibrio sólido-líquido será negativa.
  • En el cambio de fase sólido-líquido ΔV es mucho menor que en los cambios de fase sólido-gas o líquido-gas. Por esta razón la pendiente en el primer caso es mucho mayor que en los últimos.

Aplicación de la ecuación de Clapeyron a distintos cambios de fase.

Equilibrio líquido-vapor y sólido-vapor

En estos dos casos el V molar del gas es mucho mayor que el del líquido o que el del sólido por lo que puede hacerse la aproximación Eqn5-17.gif Si además se hace la suposición de que el gas se comporta como gas ideal, la ecuación de Clapeyron se transforma en: Eqn5-18.gif

Esta ecuación se suele expresar como Eqn5-19.gif llamada ecuación de Clausius Clapeyron

Si el rango de temperatura analizado es pequeño, se puede suponer que ΔH es constante a lo largo de la línea de equilibrio, y por tanto: Eqn5-20.gifec. de Clausius-Clapeyron integrada Eqn5-21.gif


Equilibrio sólido-líquido

Para estudiar los equilibrios de fase sólido-líquido, no puede utilizarse la ecuación de Clausius-Clapeyron ya que para obtenerla se han realizado una serie de aproximaciones válidas cuando una de las fases que interviene es gas. En este caso la variación de la P de equilibrio cuando cambia la T se obtiene directamente a partir de la ecuación de Clapeyron:Eqn5-22.gif

Los valores de ΔHfus y de ΔVfus varían a lo largo de la curva de equilibrio sólido-líquido, las funciones de estado H y V son funciones de T y P, y por lo tanto lo son también ΔHfus y de ΔVfus. Sin embargo la elevada pendiente de esta línea en el diagrama P-T implica que a menos que P cambie en una cantidad considerable, la variación de T será muy pequeña, por tanto podemos tomar como aproximación:


Aplicación

La ecuación de Clausius-Clapeyron sóloes aplicable para obtener la presión de vapor de un sólido o un líquido a una cierta temperatura, conocido otro punto de equilibrio entre las fases. Esto es así porque para llegar a esta expresión desde la ec. de Clapeyron se hace la aproximación de despreciar el volumen molar del sólido o del líquido frente al del gas, que además se supone de comportamiento ideal.

Esta ecuación puede ser usada para predecir dónde se va a dar una transición de fase. Por ejemplo, la ecuación de Clausius-Clapeyron se usa frecuentemente para explicar el patinaje sobre hielo: el patinador (de unos 70 kg), con la presión de sus cuchillas, aumenta localmente la presión sobre el hielo, lo cual lleva a éste a fundirse. ¿Funciona dicha explicación? Si T=−2 °C, podemos emplear la ecuación de Clausius-Clapeyron para ver qué presión es necesaria para fundir el hielo a dicha temperatura. Asumiendo que la variación de la temperatura es pequeña, y que por tanto podemos considerar constante tanto el calor latente de fusión como los volúmenes específicos.

Véase También

Fuente

  • Requena Rodríguez, Alberto; Zuñiga Roman, José. Química Física. 1ra Edición. 2007.
  • MORCILLO RUBIO, Jesús; SENENT PÉREZ y otros: Química Física. 2da Edición.2000