Karl Weierstrass

Karl Weierstrass
Información sobre la plantilla
Karl Weierstrass.JPG
NombreKarl Theodor Wilhelm Weierstrass
Nacimiento31 de octubre de 1815
Westphalia, Bandera de Alemania Alemania
Fallecimiento19 de febrero de 1897
Berlín, Bandera de Alemania Alemania
ResidenciaAlemania
NacionalidadAlemania
Alma materUniversidad de Bonn
Münster Academy
OcupaciónMatemático
PadresWilhelm Weierstrass y Theodora Forst

Karl Weierstrass. Matemático alemán citado como el "padre del análisis moderno" que dio las definiciones actuales de continuidad, límite y derivada de una función, que siguen vigentes en la actualidad.

Síntesis biográfica

Primeros años

El hijo mayor de Wilhelm Weierstrass (1790-1869) y de su mujer Theodora Forst. El padre era entonces oficial de aduanas al servicio de Francia. La familia Weierstrass estaba formada por devotos católicos liberales. El padre se había convertido desde el protestantismo, probablemente en la época de su matrimonio. Karl tuvo un hermano, Peter (que murió en 1904), y dos hermanas (Klara (1823-1896) y Elise (1826 - 1898). La madre murió en 1826, poco después del nacimiento de Elise y el padre volvió a casarse al año siguiente. El padre, en cambio, era un idealista práctico, y un hombre de cultura que en cierta época había sido maestro.

Con catorce años, Karl fue aceptado en la escuela católica de enseñanza secundaria de Paderborn. Ganó algunos premios antes de graduarse, y en 1834, siguiendo los deseos de su padre, ingresó en la Universidad de Bonn para estudiar comercio y finanzas. Sin embargo, estas materias no le interesaban y pasó la mayor parte del tiempo bebiendo, practicando esgrima y leyendo libros de matemáticas.

Vida y obra

En 1839 fue aceptado en la Academia de Teología y Filosofía de Münster, donde encontró la inspiración matemática de manos de Christof Guderman. Éste le introdujo en la teoría de las series de potencias, que más tarde serían la base de todo su trabajo. Su primer escrito importante, publicado en 1841, fue un ensayo sobre funciones elípticas.

En Durante los quince años siguientes se dedicó a dar clase en una escuela de enseñanza secundaria. En 1854 envió un trabajo sobre funciones abelianas a una publicación matemática de prestigio, y sorprendió a la comunidad matemática con su genio. Por este trabajo recibió el doctorado honorífico de la Universidad de Königsberg y en 1856 fue aceptado como profesor asociado en la Universidad de Berlín.

En 1842 Weierstrass fue maestro ayudante de matemática y física en el Pro-Gymnasium de Deutsch-Krone, Prusia Occidental. Por entonces fue ascendido al cargo de maestro ordinario. Además de las materias mencionadas, este extraordinario analista enseñaba alemán, geografía, y escritura a los niños que estaban a su cargo.

En 1848, teniendo 33 años, Weierstrass fue trasladado como maestro ordinario al Instituto de Braunsberg. Se trataba de un ascenso, pero no era mucho. La dirección del Instituto era desempeñada por un hombre excelente, que hizo cuanto pudo en favor de Weierstrass aunque sólo tenía una remota idea de la capacidad intelectual en su colega. El Instituto se jactaba de poseer una pequeña biblioteca de libros cuidadosamente elegidos sobre Matemática y otras ciencias.

El oscuro rincón de Deutsch-Krone tiene el honor de ser el lugar donde Weierstrass (en 18421843) dio por primera vez sus trabajos a la imprenta. Las escuelas alemanas publicaban algunas veces "programas" que contenían trabajos debidos a los miembros del cuerpo. Weierstrass contribuyó con un trabajo: "Observaciones sobre factoriales analíticas". No es necesario explicar lo que son; pero conviene señalar aquí que el tema de las factoriales era uno de los que causaban muchos inútiles dolores de cabeza a los más viejos analistas. Hasta que Weierstrass abordó los problemas relacionados con las factoriales, el nudo de la cuestión había pasado inadvertido.

Poco después, Weierstrass aplicó su método a los sistemas de ecuaciones diferenciales que se presentan en el problema de los tres cuerpos, problema que, desde Euler, se considera uno de los más difíciles. Matemáticamente, se reduce a resolver un sistema de nueve ecuaciones diferenciales simultáneas lineales o de segundo grado. Si existe una solución, ésta vendrá dada bajo forma de series infinitas, y la solución existe si estas series satisfacen las ecuaciones, y, además, son convergentes para ciertos valores de las variables. Weierstrass atacó el problema con todo rigor, haciéndolo progresar de manera notable. Posteriormente lo estudiaron: el francés Henri Poincaré en 1905, el finlandés Carlos Frithiof Sudmann en 1906, el español José María Plans en 1916, el colombiano Julio Garavito en 1918 y el peruano Godofredo García en 1950.]]

Abrumado por las enormes responsabilidades de su nuevo cargo, sufrió una crisis nerviosa en 1861, que le apartó de las aulas dos años. A pesar de ello, en 1864 fue ascendido a profesor, cargo que ostentó el resto de su vida.

Al cumplir los setenta, Weierstrass recibió el homenaje de todo el mundo científico y a los ochenta y dos, pocos antes de morir, el 19 de febrero de 1897, la Universidad de Berlín celebró su jubileo con solemnidad excepcional.

Muerte

Murió en Berlín, Alemania el 19 de febrero de 1897.

Curiosidades

Aunque Weierstrass nunca se casó, no era un empedernido solterón que ponía pies en polvorosa cuando veía acercarse a una bella mujer.

Un matemático que no es también algo de poeta, nunca será un matemático completo.
Karl Weierstrass

Véase también

Fuentes

  • Ribnikov, K.: Historia de las matemáticas (págs. 368, 370 y 469). Moscú (Unión Soviética), Editorial MIR.
  • Artículo en el sitio web Abalontico Matemáticas, de la UNAM (México).
  • «Karl Weierstrass», artículo en español publicado en el sitio web Learn Math (aprendizaje de matemática).