Motor de corriente alterna
|
Motor de corriente alterna. Motor eléctrico que funciona con corriente alterna.
Sumario
Generales
Un motor es una máquina motriz, que convierte una forma determinada de energía en energía mecánica de rotación o par. Un motor eléctrico convierte la energía eléctrica en fuerzas de giro por medio de la acción mutua de los campos magnéticos.
Un generador eléctrico, por otra parte, transforma energía mecánica de rotación en energía eléctrica y se le puede llamar una máquina generatriz de fem. Las dos formas básicas son el generador de corriente continua y el generador de corriente alterna, este último más correctamente llamado alternador.
Todos los generadores necesitan una máquina motriz (motor) de algún tipo para producir la fuerza de rotación, por medio de la cual un conductor puede cortar las líneas de fuerza magnéticas y producir una fem.
La máquina más simple de los motores y generadores es el alternador. En algunos casos, tales como barcos, donde la fuente principal de energía es de corriente continua, o donde se desea un gran margen, pueden emplearse motores de c-c. Sin embargo, la mayoría de los motores modernos trabajan con fuentes de corriente alterna.
Motores
Existe una gran variedad de motores de c-a, entre ellos tres tipos básicos: el universal, el síncrono y el de jaula de ardilla.
Motores universales
Los motores universales trabajan con voltajes de corriente continua o corriente alterna. Tal motor, llamado universal, se utiliza en equipos como la sierra eléctrica, taladros, utensilios de cocina, ventiladores, sopladores, batidoras y otras aplicaciones donde se requiere gran velocidad con cargas débiles o pequeñas fuerzas.
Estos motores para corriente alterna y directa, incluyendo los universales se distinguen por su conmutador devanado y las escobillas. Los componentes de este motor son: los campos (estator), la masa (rotor), las escobillas (los excitadores) y las tapas (las cubiertas laterales del motor).
Ventajas y desventajas
El circuito eléctrico es muy simple, tiene solamente una vía para el paso de la corriente, porque el circuito está conectado en serie. Su potencial es mayor por tener mayor flexibilidad en vencer la inercia cuando está en reposo, o sea, tiene un par de arranque excelente, pero tiene una dificultad, y es que no está construido para uso continuo o permanente.
Otra dificultad de los motores universales son las emisiones electromagnéticas. Las chispas del colector (chisporroteos) junto con su propio campo magnético generan interferencias o ruido en el espacio radioeléctrico. Esto se puede reducir por medio de los condensadores de paso, de 0,001 μF a 0,01 μF, conectados de las escobillas a la carcasa del motor y conectando ésta a masa.
Estos motores tienen la ventaja de que alcanzan grandes velocidades pero con poca fuerza. Existen también motores de corriente alterna trifásica que funcionan a 380 V y a otras tensiones.
Motores síncronos
Implicando, se puede utilizar un alternador como motor en determinadas circunstancias. Si se excita el campo con c-c y se alimenta por los anillos colectores a la bobina del rotor con c-a, la máquina no arrancará. El campo alrededor de la bobina del rotor es alterno en polaridad magnética pero durante un semiperiodo del ciclo completo, intentará moverse en una dirección y durante el siguiente semiperiodo en la dirección opuesta.
El resultado es que la máquina permanece parada. La máquina solamente se calentará y posiblemente se quemará. Para generar el campo magnético del rotor, se suministra una CC al devanado del campo; esto se realiza frecuentemente por medio de una excitatriz, la cual consta de un pequeño generador de CC impulsado por el motor, conectado mecánicamente a él. Se mencionó anteriormente que para obtener un par constante en un motor eléctrico, es necesario mantener los campos magnéticos del rotor y del estator constantes el uno con relación al otro. Esto significa que el campo que rota electromagnéticamente en el estator y el campo que rota mecánicamente en el rotor se deben alinear todo el tiempo. La única condición para que esto ocurra consiste en que ambos campos roten a la velocidad sincrónica.
El rotor de un alternador de dos polos debe hacer una vuelta completa para producir un ciclo de c-a. Debe girar 60 veces por segundo (si la frecuencia fuera de 60 Hz), o 3.600 revoluciones por minuto (rpm), para producir una c-a de 60 Hz. Si se puede girar a 3.600 rpm tal alternador por medio de algún aparato mecánico, como por ejemplo, un motor de c-c, y luego se excita el inducido con una c-a de 60 Hz, continuará girando como un motor síncrono. Su velocidad de sincronismo es 3.600 rpm. Si funciona con una c-a de 50 Hz, su velocidad de sincronismo será de 3.000 rpm. Mientras la carga no sea demasiado pesada, un motor síncrono gira a su velocidad de sincronismo y solo a esta velocidad. Si la carga llega a ser demasiado grande, el motor va disminuyendo velocidad, pierde su sincronismo y se para.
Los motores síncronos de este tipo requieren todos una excitación de c-c para el campo (o rotor), así como una excitación de c-a para el estator. Se puede fabricar un motor síncrono construyendo el rotor cilíndrico normal de un motor tipo jaula de ardilla con dos lados planos. Un ejemplo de motor síncrono es el reloj eléctrico, que debe arrancarse a mano cuando se para. En cuanto se mantiene la c-a en su frecuencia correcta, el reloj marca el tiempo exacto. No es importante la precisión en la amplitud de la tensión.
Motores de jaula de ardilla
La mayor parte de los motores que funcionan con c-a de una sola fase tienen el rotor de tipo jaula de ardilla. Los rotores de jaula de ardilla reales son mucho más compactos y tienen un núcleo de hierro laminado. Los conductores longitudinales de la jaula de ardilla son de cobre y van soldados a las piezas terminales de metal.
Cada conductor forma una espira con el conductor opuesto conectado por las dos piezas circulares de los extremos. Cuando este rotor está entre dos polos de campos electromagnéticos que han sido magnetizados por una corriente alterna, se induce una fem en las espiras de la jaula de ardilla, una corriente muy grande las recorre y se produce un fuerte campo que contrarresta al que ha producido la corriente (ley de Lenz).
Aunque el rotor pueda contrarrestar el campo de los polos estacionarios, no hay razón para que se mueva en una dirección u otra y así permanece parado. Es similar al motor síncrono el cual tampoco se arranca solo. Lo que se necesita es un campo rotatorio en lugar de un campo alterno. Cuando el campo se produce para que tenga un efecto rotatorio, el motor se llama de tipo de jaula de ardilla.
Motor de fase partida
Un motor de fase partida utiliza polos de campo adicionales que están alimentados por corrientes en distinta fase, lo que permite a los dos juegos de polos tener máximos de corriente y de campos magnéticos con muy poca diferencia de tiempo.
Los arrollamientos de los polos de campo de fases distintas, se deberían alimentar por c-a bifásicas y producir un campo magnético rotatorio, pero cuando se trabaja con una sola fase, la segunda se consigue normalmente conectando un condensador (o resistencia) en serie con los arrollamientos de fases distintas. Con ello se puede desplazar la fase en más de 20° y producir un campo magnético máximo en el devanado desfasado que se adelanta sobre el campo magnético del devanado principal.
Desplazamiento real del máximo de intensidad del campo magnético desde un polo al siguiente, atrae al rotor de jaula de ardilla con sus corrientes y campos inducidos, haciéndole girar. Esto hace que el motor se arranque por sí mismo. El devanado de fase partida puede quedar en el circuito o puede ser desconectado por medio de un conmutador centrífugo que le desconecta cuando el motor alcanza una velocidad predeterminada.
Una vez que el motor arranca, funciona mejor sin el devanado de fase partida. De hecho, el rotor de un motor de inducción de fase partida siempre se desliza produciendo un pequeño porcentaje de reducción de la que sería la velocidad de sincronismo. Si la velocidad de sincronismo fuera 1.800 rpm, el rotor de jaula de ardilla, con una cierta carga, podría girar a 1.750 rpm.
Cuanto más grande sea la carga en el motor, más se desliza el rotor. En condiciones óptimas de funcionamiento un motor de fase partida con los polos en fase desconectados, puede funcionar con un rendimiento aproximado del 75%.
Sombreado de campo magnético
Otro modo de producir un campo rotatorio en un motor, consiste en sombrear el campo magnético de los polos de campo. Esto se consigue haciendo una ranura en los polos de campo y colocando un anillo de cobre alrededor de una de las partes del polo.
Mientras la corriente en la bobina de campo está en la parte creciente de la alternancia, el campo magnético aumenta e induce una fem y una corriente en el anillo de cobre. Esto produce un campo magnético alrededor del anillo que contrarresta el magnetismo en la parte del polo donde se halla él. En este momento se tiene un campo magnético máximo en la parte de polo no sombreada y un mínimo en la parte sombreada.
En cuanto la corriente de campo alcanza un máximo, el campo magnético ya no varía y no se induce corriente en el anillo de cobre. Entonces se desarrolla un campo magnético máximo en todo el polo. Mientras la corriente está decreciendo en amplitud el campo disminuye y produce un campo máximo en la parte sombreada del polo. De esta forma el campo magnético máximo se desplaza de la parte no sombreada a la sombreada de los polos de campo mientras avanza el ciclo de corriente.
Este movimiento del máximo de campo produce en el motor el campo rotatorio necesario para que el rotor de jaula de ardilla se arranque solo. El rendimiento de los motores de polos de inducción sombreados no es alto, varía del 30 al 50 por 100.
Ventajas
Una de las principales ventajas de todos los motores de jaula de ardilla, particularmente en aplicaciones de radio, es la falta de colector o de anillos colectores y escobillas. Esto asegura el funcionamiento libre de interferencias cuando se utilizan tales motores. Estos motores también son utilizados en la industria. El mantenimiento que se hace a estos motores es fácil.
Fuentes
- Colectivo de autores. Máquinas Eléctricas.