Paraboloide elíptico
|
Paraboloide elíptico. Es la superficie que se ha creado al deslizar una parábola vertical con la concavidad hacia abajo, a lo largo de la otra, perpendicular a la primera; las secciones horizontales son elipses mientras que las verticales son parábolas.
Definición
Se denomina Paraboloide Elíptico a la superficie que en un sistema de coordenadas cartesianos se determina por la ecuación:
Las secciones de la cual son parabólicas o elípticas. El caso de revolución se obtiene haciendo girar una parábola alrededor de su eje de simetría y resulta ser el lugar geométrico de los centros de las esferas que pasan por un punto y son tangentes a un plano.
Características
El punto que coincide con el origen de coordenadas se llama vértice del paráboloide. Si la figura no coincide con el origen de coordenadas en el vértice entonce la ecuación es:
Las secciones que se obtienen al cortar la figura por planos con el eje Oz son parabolas. Las secciones que se obtiene al corta la figura por planos con el eje Oz son elipses.
Cuando a= b es el paraboloide elíptico es un Paraboloide en Revolución.
Aplicación
Tiene la forma de las llamadas antenas parábolicas.Entre otros usos de origen cotidiano. Tiene la propiedad de reflejar (en caso de tener una superficie reflactante) la luz hacia un punto.
Curiosidad
Si mueves circularmente un vaso medio lleno la superficie que forma la parte superior del líquido es un Hipérboloide Elíptico.